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TOPOLOGICAL ANALYSIS OF NATURAL SYSTEt% WITH QUADRATIC INTEGRALS* 

V.I. ORElc-lOV 

A method for the qualitative investigation of natural systems is considered, 
which enables integrals that are quadratic in velocities to be used based 
on a description of the surfaces of integral levels in the phase space. 
The concept of the normalized quadratic integral and the connection between 
its presence and the separation of positional variables is established. 
The method of topological analysis, proposed in /l/ for systems with linear 
integrals, is extended to problems containing quadratic integrals. Surfaces 
of the integral levels, their bifurcations, and the regions of possible 
motion for given values of the integrals are described. As an example of 
their application, the motion of a solid inapotential field is considered. 

1. The quadratic integrals. Their normalizability. All objects are assumed 
to be smooth. Let M be the n-dimensional configuration manifold having the metric <.,.>, let 
x be its point, and 1etTM be the tangent lamination and T&I the lamination over the point 
x. For the laminar linear operator r: TM +TM the symbol I?% denotes its contraction on 
T,hf. We will denote the vector field on M by the same symbol as its arbitrary vector; the 
distinction is clear from the context. The symbol of form v, denotes either a separate 
element T,M or a vector of field Y applied at the point x. 

Let V be the operator of covariant differentiation of the function V on M, the potential. 
The trajectory of the system is defined by Newton's equation 

V,v = -grad V 
where V, is the velocity vector at the point XE M, and the energy integral 

H CT.,) = I/* I v,12 + v (5) 
exists. 

Consider the function G: TM -cl? which is quadratic in the velocities 

G (v,) = l/a <rv=, v,> + W (4 (1.1) 

where I': TM --t TM is a symmetric laminar linear operator and W is a function on M. 
The necessary and sufficient condition for G to be the first integral is expressed by the 

equations /3/ 

(v,ru,w) + (v"rw,v)+(v,rv,u)=o, rgrad V= gradW (1.2) 

It can be shown that the lack of a term that is linear in the velocites does not lead to 
any loss of generality. 

Definition. We shall call normal those coordinates of the quadratic integral (1.1) on 
M whose basis vectors at every point are eigenvectors of the operator r,: T&f -+ T&f, and 
we shall call (1.1) normalizable, if normal coordinates exist for it, and non-normalizable 
otherwise. 

The existence of the normalizable quadratic integral is closely connected with the 
separation ofpositionalvariables.**(**Orekhov V.I. On the separation of variables in natural 
systems with quadratic integrals. Moscow, 1979. Manuscript deposited in VINITI 29.02. 79, 
No.720.) The problem admits of a normalizble quadratic integral with non-coinciding eigen- 
values of the quadratic part, if and only if its normal coordinates are St&kel coordinates. 
Owing to the separation of these variables into Hamilton-Jacobi equations, the problem in this 
case is fully integrable /4/. If a non-normalizable quadratic integral exists and the system 
is non-degenerate, and the separation of positional variables is impossible. 

Let us determine the conditions for integral (1.1) to be normalizable. The operator rl 
has n different real eigendirections at each point zE M. Let ul, . . ..u. be smooth vector 
fields such that at points of the general position the vectors uir constitute the basis space 

T,M consisting of the eigenvectors lYr Let 

n 

[U,, Ujl = 2 C2jkUk, i,j=l,...,n 
k-1 
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The integral will be normalizable, if fune$i$ns &, . . .,6, can be found on M such that 
the fields eiuj become basis fields for some coordinates, i.e. will be pairwise commute 

0 = f#iUit 6jUjl = ~~Ui(~j~ - 6jUj (Sf) i 6iej fUi* Ujl 

which is equivalent to the relations 

* = 0, cij i,i# k (1.3) 

uj (In 6,) = Cjti3 t: + 1 (1.4) 

For each j (1.4) yields a system of (n- I) linear differential equations in In6j. The 
conditions of its complete integration in view of (1.31 have the form 

uj fctjaf - Uj (CXtk) = CijiCtiik + cjiGkj* 

The equations together with (1.3) define the normalization condition. 
Note that any quadratic integral is normalizable in a system with two degrees of freedom. 

Indeed, when n=2 conditions (1.3) is eliminated, and from (1.4) two equations are obtained 
which are integrated independently of one another. 

2. Levels of quadratic integrals. Characteristic functions. Consider the 
integral (1.1). Let ul, . . ., u, be the basis vector fields introduced in Sect.1, with consist 
of eigenvectors of the operator r, and J,,(Z),...,&,(~) their corresponding eigenvalues. We 

assume that everywhere on M we have A,> . ..>A.. Because of the orthogonality of the fields 
ui, from (1.2) it follows that 

hiUi (V) = Us (W)* Ui (Ai) = 0 (2.1) 

1 Ui /%lj (hi) = (hi - J-j) (Uj (I uf 12) -t 2<fUi, Ujl, Ui)) 

i+i 

Let us construct the integral representation of J = G X H: TM +R2, whose levels are 
the integral sets 

zBh = z-'(g, 11) = {v, EE TM :G (v,) = g, H(v,) = h) 

For regular values of I, which are points of general position on the plane R2 = {(g,h)), 
and the sets fgh are smooth manifolds that retain their type for small variations of g,and h. 
The critical values of I form bifurcation curves in the {(g,h)} plane the integrals of the 
manifold rgj, passing across them undergo a reconstruction. 

In the description of the structure of integral manifolds and their bifurcations a key 
part is played by the n functions of positional variables which we shall call characteristic. 
These are the functions 

@j = hi@ -V) + w-g (2.2) 

which parametrically depend on the constants q and h. We denote the characteristic functions 
which correspond to fixed values of these constants by Qi igh. By virtue of (2.1) we have 
uj(cDi)= 0, i.e. the surface levels of the functions @i I oh are invariant to the field uj 
and their cirtical points are degenerate. 

The following theorem defines the characteristic functions for the topological analysis. 

Theorem. The critical points vr~ Tfif of the integral representation are determined 
by one of the following n conditions (i z 1, ..,.n): 

‘;I/ uixv d@i /gh = 0, g = G (v,), h = H (v,) 

Proof. The differentials dG, dN: T,TM -+I? are proportional at the critical point vx, 
We separate in every tangent space T,TM a vertical subspace T,T,M. The proportionality 
of dG and dH on T,T& means the proportionality of the partial derivatives of the quad- 
ratic forms (TV=, v,> and / vs 1’ with respect to the velocity variables, which gives v+//uix, 

and the proportionality coefficient is equal to &i tx)* 

Thus the cirtical points v, are contained in one of the R laminations over M with a 
one-dimensional layer generated by ui. The critical points are separated from these laminations 
by the condition of proportionality of dG and dH with the same coefficient on any sub- 
space of the T,TM space, which is transverse to the vertical TvTfl. Such a subspace 
may be considered as the tangent space to the set {v, =&j+}, where 6 (5) is some functions 
on M. Hence for the critical points 

dG (@uj,) = hj (zf dH @ujJ (2.3) 

Since 6ui, are eigenvectors for the quadratic part of integral G, we have 

G @ui,) - W = hj (Z)(H (%lj*) - V) 
After differentiation of this identity it will be seen that condition (2.3) taking the 



equation H(Sut,)= h into account, is equivalent to the condition 

0 = dXt (h - V) + kid (h - V) + d (f+’ - 8) = d’& igh 

We shall denote the projection of the set Igh onto the configuration manifold by Mgh, 
and call it the region of possible motions. It is the set of points through which the trajec- 
tories of motion may pass for fixed values of the integrals G=g,H= h. The section of Ig,, 
by the tangent space TJl represents a set of velocity vectors of possible motions passing 
through the point ZE M. 

Each layer Tfl n zgh is formed by the intersection of second-order surfaces in TJkl 

T3 n I&?h = k (r%, Va = 2 k - w)} n {V,: 1 V, I* = 2 (h - V)} 

This intersection is non-empty when the condition 

is satisfied, i.e. when h, (h- V)< (g - W) < & (h - V), which by definition of the character- 
istic function is equivalent to the condition @,, lgh < 0 -< @I I?,.. 

Thus the regions of possible motion are 

MBh = {@I Igh > O) f-l ((p, &A ‘, 0) 

The edges of this curvilinear polyhedron coincide with the intersections of the surfaces of 
level {V= h) and {W = g} and all surfaces {Qi I@, = 0) pass through it. Indeed, since 

1'1 + h, the equations @,= Q,=O are equivalent to the conditions V-h = W-g= 0, and 
hence Qi = 0, i = 1,. . ., 12. 

At the critical points @'1 and a,,, as follows from (2.3), a reconstruction of the 
regions Mgh occurs. Bifurcation of the integral equations Iph over the critical points of 
the remaining characteristic functions are revealed by the reconstruction of the edges of 
iWgh: if d@,, =O* and V= h, then from (2.2) it follows that -_XldV $ dW = 0, i.e. dV and 
dW are proportional. 

The cuts T,M n Igh maintain their topological type under condition ij+l I vz I2 C <rtra-, 
V*> < ;.j I Vx 1’~ which is equivalent to @j+l Igh < 0< CD, I.),, j = f,..., n - 1, and are reconstructed 

when hiI v, 12 = (lb+, v,), i.e. over points {@i tgh = 0). Over the edges I@,= 0) and (@,== IJ) 
the cut degenerates into a pair of vectors v II u1, n tangent to the edges. 

The set of critical points of the characteristic functions dli which are invariant 
relative to the fields ui carry in themselves the trajectories of the problem that are tangent 
to these fields. 

Theorem. The integral curve of the field ui is the trajectory of the field, if and only 
if it passes through the critical points of the function @',. 

Note that this trajectory lies on the surface {(Bi = 0). 

Corollary. If the set of critical points of the zero level of the function Qi has a 
one-dimensional component, that component is the trajectory of steady motion with velocity 

y= i )B-pi=T) 1 ui I-k, 

of periodic, limit, or libration motion depending on the character of its intersection with 
Hill's surface {V = h). 

Proof of the theorem. Let v, = &r,,. 6" = 2 (h - V) / ui j-2. By the properties of covariant 
differentiation taking into account the orthoqonality of ui, relations (2.1) and [u,~] = C,n- 
V WU we obtain 

(‘7,~ + grad V, Ui) = 6-‘V (h) = 0 
(‘7,~ + grad V, Uj) = (?*j - hi)-‘uj (@i), i # j 

i.e. we have V,v = -grad V, if and only if U, pi) = 0, j = 1, . . ., n. 

3. Example: a solid in a Goryachev field. Consider the motion of a solid in a 
field with the potential /2/ 

I. = --AT (a, /5, y) - Bq (a’, v, ~‘1 - Cp (a”, B”. v”) (3.1) 

where A > B>C are the principal moments of inertia, c,...,y" are the direction cosines of 
the principal axes of inertia relative to the stationary frame of reference %,,,a and cp is 

a quadratic form with constant coefficients. Such a potential approximates, for example, the 
gravitational action of an arbitrary distributed mass on a body fixed at the Centre of gravity. 

In this case the configuration manifold is M ~so(~),FI= 3; the elements TM ca be identi- 
fied with the angular velocity vectors in three-dimensional space. 

Suppose the fixed frame of reference coincides with the principal axes of the form (r. 
Then 
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If all eigenvalues ai are the same, then y= coast; when only two of them are the same, 
a de Brun potential is obtained, 

Consider the case of different eigenvalues o,>o,>Q. 
If we add to each cli the same term, potential (3.1) in view of ez--_~a+,+=i etc.becomes 

a constant. Below we will assume that a,+a,+o,= 0. Then 

cp (a, B9 V) + 'P (a'. B', y') + cp (a". 8",~')= 0 (3.2) 

According to /2/t besides the energy integral H the problem admits of another quadratic 
integral G; we have in standard notation 

H = 'I, (Ap* + Bq2 + CP) + v, C = ‘in (A*p? + B*qZ ,- P+) + w 

W = BCP (a, t% 19 4 CAT (a’, B’, v’) + ABq (a”, B’, y”) 

The eigenvalues of the quadratic part of G are 4 = A, A, = B, R, = C. As the eigenvectors 

we take uA, us, uc which are the unit vectors of the respective axes of inertia, which determine 
rotation around these axes at unit velocity. Since [u,, ug] = uc etc., the normalization con- 

ditions are not satisfied and the integral G is not normalizable. 
The characteristic functions, taking condition (3.2) into account, have the form 

mA = (A - B) (A - C) cp (a, B, u) i Ah - g 

(ABC, aa'a", @'B",w'v") 

and their ciritcal points coincide with the cirtical points q(a,i?,y), (~(a',fl',~'), (p(a",f$',y") 
respectively. It is convenient to change from the constants g, h to the parameters l,, 1, 

g - Ah 
“‘=(A-@(.4-C)’ 

The conditions @)A>,~* acfo, 0s = o are then equivalent to the relations m(a.1, y)>Z,, 
cp (a", B", v") < Z:, --cp (a', B', v') = (II t- I,). 

The regions where motion is possible are then 

MBh = (9 (a, BP v) > 4) fl ((P (a', B", u") d U 

The reconstructions of curves of possible velocities occurs over the points (p (a’,B’,f) = 

- (4 + Ul. 
Bifurcation of the integral levels I&,h occurs when Z,,Z,, -(Z,I /J pass through the critical 

values of cp, i.e. when 1, = LI*, Z, = ai, I, -+- I,= -ai, i = i,~,3. The positions of the solid when 

U.4,B.C are collinear to one of the vectors of the fixed frame of reference correspond to points 
of the characteristic functions, at which bifurcation occurs. 

The rotations of the solid around its principal axis of inertia that and collinear with 
the vector of the fixed axis of reference ei, define the steady motions described in Sect.2. 
Let us consider the motion when uA)~e~: then I, = al. When the change of initial conditions of 
the quantities (aI- L1) is small, the quantity hfgh will be a small cylindrical neighbourhood 
of the steady-motion trajectory. Consequently the motion considered here is stable with 
respect to some of the variables. Likewise, the steady motion is stable with respect to some 
of the variables, when uc ii e3. 

Let the eigenvalues of the form o be connected by the condition a, - Q = a,- c?. In this 
case, from the stipulation a1 A ~+a~= 0 it follOwS that (I~= O,al = -a)= a>0 and 

V = --a [A (a2 - ~2) - B (a’? _ ,a’%) _L C (=“J _ ,,“2)] 

w = t3 [BC (a’ - ,+J - CA (a’2 _ 7’2) + AB (~“2 - ,?2)] 

According to /2/ the problem with potential v, 
a third quadratic integral 

besides the integrals H and G, admits of 

F = I!? [(Asp j Ba’q -- Ca”r)* - (A.;/I + By’q +- Cyxr)2] i. (i 

U = n (BC~” + CAfi” + A@“*) 

We will introduce the parameters gij= cei.ej,, where ei are vectors of the fixed frame of 
reference. The six variables gi,= g,, may be considered as redundant local coordinates on 
so (3). In these variables v = B (g,, - g,,). U = (I (g,,g,, - &); 

part of the integral F are 
and the eigenvalues of the quadratic 

1 l.s = I/* (hl - A-3, t V/(&l + g,,? - 4&d 1, = 0 

The quantites J., and k, 
C<&<A, 

are functionally independent and take values within the limits 
-A <iv, < -C. 

The eigenvectors w1 (i = 1,2. 3) have in the basis uA.B.C the coordinates 
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where 

lib - YiB + ziy lid -!- v,fJ’ + ziy .Tp” + r/p -+ ZiV” 
.4 ,B’G 

=1,3 = h1.t fIGi f ?5-), l/l,S = h,, (Y’Z r 1’a 
%,s = klP i &,) I% + i&a f g3 I‘% 

g* = ‘i? kll + Bar 1 * ha. z, = Y, = 0. % = i 

Since 1 = n(A,+ La), U = --ah,&, thecharacteristic functionsare Q)1,5 --: &,,z+ h&,,-f, ctt,= u-f, 
The regions where motion is possible &if,= (Q),>IO)r)((PI<~o) are bounded by the surfaces 

(b,,, = const) and are determined by the disposition of the roots of the quadratic trinomial 

a??+&-- with respect to the intervals [C,A] and I--A,--Cl. 
The critical points of the characteristic functions are defined by the equations 

0 = &$ = (2ah,,a + h) Ii),,,, 0 = d@t, = dU 

The conditions dC = 0, di;,,, = 0 provide the points ~_.,,s,~\)e~,~,~, determined earlier, and 

the conditions &~i.,,~+ h= 0 define new sets of critical points that is, the surfaces 61 3 = , 
const} . To the critical zero level of the characteristic function Q,Jfh there corresponds the 
constant quantity b, equal to the multiple root of the trinomial a?.*+ hL in the interval 
rc,a1. This trinomial is positive on I-A.--Cl, i.e. everywhere we have ~t,lfrr>or and 
hence MJh is empty. On the critical zero level (l,=const) of the characteristic function 

@a lfh we similarly have @,,(f,,>O, i.e. Mfh == (h, = con&). 
By the second theorem in Sect.2 this surface &ifh consists of the trajectories of the 

problem on which the velocity Y= owQ. o== hf2(h- v)Iw,I-'. 
Using the integral G, we obtain the function of positional variables G(OW~) that are 

functionally independent of A,. Since on these trajectories G(ow~) = cow, A,= const, they are 
closed curves and the motions on them are periodic. 

The author thanks V.G. Demin for his interest. 
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NON-LINEAR ANALYSIS OF THE STABILITY OF THE LIBRATION POINTS 
OF A TRIAXIAL ELLIPSOID* 

1.1. KOSENKO 

The stability of libration points of a triaxial homogeneous gravitating 
ellipsoid rotating around one of its principal central axes of inertia is 
studied. The plane motion of a passive point of unit mass is considered. 
In parameter space a region of stability is constructed anal, also, resonance 
sets for all the resonances investigated. A systematic analysis of the 
stability of a libration point is carried out, using respective theorems 
for the equilibrium positions of Hamiltonian systems with two degrees Of 
freedom. 

A qualitative investigation of the geometric structure of the stability region wascarried 

out in /I, 2.l. 
If the ellipsoid is a figure of revolution around the central polar axis of inertia ill, 

the relative equilibrium positions are not isolated and fill a circle in the equatorial plane. 
If, however, the equatorial semiaxes are different, the ellipsoid may have up to four isolated 
positions of relative equilibrium. The conditions of existence of libration points external 
to the ellipsoid in this problem and, also, the canonical equations of motion in the 
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